6 research outputs found
Individuals with Intellectual & Developmental Disabilities and Meaningful Employment
Individuals with disabilities tend to face poverty at a higher rate compared to those without disabilities (Kelley, 2016). Individuals with intellectual and developmental disabilities (IDD) benefit from a variety of supports to work in their communities. Not providing services to address these needs can cause increased unemployment rates and dependence on others. Currently, there is a lack of attention by OTP on supporting individuals with IDD (14-26 years) when acquiring meaningful employment. Increasing OTP’s awareness about the relationship between self-determination and employment can promote more services. Self-Determination is about acting or causing things to happen in your life as you work toward your goals (Shogren et al., 2015), and has been linked to enhanced employment outcomes and higher quality of life (Mumbardo-Adam et al., 2020). Advocating for the use of the Self-Determined Career Design Model (SDCDM) by occupational therapy practitioners (OTP) when working with individuals with IDD will help provide employment opportunity, equality, and life-fulfillment to those searching for meaningful employment.https://soar.usa.edu/otdcapstones-spring2022/1032/thumbnail.jp
Molecularly imprinted polymer hydrogel sheets with metalloporphyrin-incorporated molecular recognition sites for protein capture
Metalloporphyrins are often found in nature as coordination recognition sites within biological process, and synthetically offer the potential for use in therapeutic, catalytic and diagnostic applications. While porphyrin containing biological recognition elements have stability limitations, molecularly imprinted polymers bearing these structures offer an alternative with excellent robustness and the ability to work in extreme conditions. In this work, we synthesised a polymerizable porphyrin and metalloporphyrin and have incorporated these as co-monomers within a hydrogel thin-sheet MIP for the specific recognition of bovine haemoglobin (BHb). The hydrogels were evaluated using Scatchard analysis, with Kd values of 10.13 × 10−7, 5.30 × 10−7, and 3.40 × 10−7 M, for the control MIP, porphyrin incorporated MIP and the iron-porphyrin incorporated MIP, respectively. The MIPs also observed good selectivity towards the target protein with 73.8%, 77.4%, and 81.2% rebinding of the BHb target for the control MIP, porphyrin incorporated MIP and the iron-porphyrin incorporated MIP, respectively, compared with the non-imprinted (NIP) counterparts. Specificity was determined against a non-target protein, Bovine Serum Albumin (BSA). The results indicate that the introduction of the metalloporphyrin as a functional co-monomer is significantly beneficial to the recognition of a MIP, further enhancing MIP capabilities at targeting proteins
Investigating the antiviral activity of bioactive Swertia chirayita compounds against coronaviruses.
Aim: The emergence of three pandemic coronaviruses in the last two decades combined with numerous coronaviruses circulating in bats suggest that spillover of new coronaviruses into humans is likely in the future. The development of broad-spectrum antivirals is vital to allow rapid deployment to patients in the absence of a pan-coronavirus vaccine. This project aims to employ a model coronavirus system as an initial screening tool to identify novel natural product-derived antivirals.
Methods: Antiviral activity of a panel of natural compounds and synthetic xanthones based on bioactive compounds from the medicinal plant Swertia chirayita were tested against a model seasonal human coronavirus (HCoV) OC43. Infected baby hamster kidney (BHK-21) cells were treated with compounds and impact on infectivity determined by quantifying viral titres. Alongside, cytotoxicity of the compounds was also determined.
Results: Our initial screen identified six compounds that indicated antiviral activity, with synthetic xanthones showing a significant reduction in viral infectivity of HCoV-OC43 at non-cytotoxic concentrations. Preliminary experiments suggest that these inhibit the virus at early stages of the viral life cycle.
Conclusions: We have identified bioactive compounds derived from Swertia chirayita, which show significant antiviral efficacy in a human coronavirus. Further work to evaluate their pan-coronavirus activity, as well as to understand the mechanism of action are on-going
Hydroxy-xanthones as promising antiviral agents: synthesis and biological evaluation against human coronavirus OC43
open access articleA number of synthetic hydroxy-xanthones related to isolates from the plant genus Swertia (family Gentianaceae) were prepared and their antiviral activity assessed against human coronavirus OC43. Overall, the results of the initial screening of the test compounds in BHK-21 cell lines show promising biological activity, with a significant reduction in viral infectivity (p≤0.05). In general, the addition of functionality around the xanthone core increases the biological activity of the compounds compared to xanthone itself. More detailed studies are needed to determine mechanism of action, but favourable property predictions make them interesting lead compounds for further development as potential treatments for coronavirus infections
Recommended from our members
Risk of COVID-19 after natural infection or vaccinationResearch in context
Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
Risk of COVID-19 after natural infection or vaccinationResearch in context
Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health