72 research outputs found

    Review of flexible energy harvesting for bioengineering in alignment with SDG

    Get PDF
    To cater to the extensive body movements and deformations necessitated by biomedical equipment flexible piezoelectrics emerge as a promising solution for energy harvesting. This review research delves into the potential of Flexible Piezoelectric Materials (FPM) as a sustainable solution for clean and affordable energy, aligning with the United Nations' Sustainable Development Goals (SDGs). By systematically examining the secondary functions of stretchability, hybrid energy harvesting, and self-healing, the study aims to comprehensively understand these materials' mechanisms, strategies, and relationships between structural characteristics and properties. The research highlights the significance of designing piezoelectric materials that can conform to the curvilinear shape of the human body, enabling sustainable and efficient mechanical energy capture for various applications, such as biosensors and actuators. The study identifies critical areas for future investigation, including the commercialization of stretchable piezoelectric systems, prevention of unintended interference in hybrid energy harvesters, development of consistent wearability metrics, and enhancement of the elastic piezoelectric material, electrode circuit, and substrate for improved stretchability and comfort. In conclusion, this review research offers valuable insights into developing and implementing FPM as a promising and innovative approach to harnessing clean, affordable energy in line with the SDGs.</p

    Review of flexible energy harvesting for bioengineering in alignment with SDG

    Get PDF
    To cater to the extensive body movements and deformations necessitated by biomedical equipment flexible piezoelectrics emerge as a promising solution for energy harvesting. This review research delves into the potential of Flexible Piezoelectric Materials (FPM) as a sustainable solution for clean and affordable energy, aligning with the United Nations' Sustainable Development Goals (SDGs). By systematically examining the secondary functions of stretchability, hybrid energy harvesting, and self-healing, the study aims to comprehensively understand these materials' mechanisms, strategies, and relationships between structural characteristics and properties. The research highlights the significance of designing piezoelectric materials that can conform to the curvilinear shape of the human body, enabling sustainable and efficient mechanical energy capture for various applications, such as biosensors and actuators. The study identifies critical areas for future investigation, including the commercialization of stretchable piezoelectric systems, prevention of unintended interference in hybrid energy harvesters, development of consistent wearability metrics, and enhancement of the elastic piezoelectric material, electrode circuit, and substrate for improved stretchability and comfort. In conclusion, this review research offers valuable insights into developing and implementing FPM as a promising and innovative approach to harnessing clean, affordable energy in line with the SDGs.</p

    The Design Modelling of PEEK Composite for Bone Implants

    Get PDF
    This research study shows the enhancing biocompatibility and structural integrity of Hip and Femur Implants through PEEK Composite and FDM Techniques. Examines using polyether-ether-ketone (PEEK) materials for improved bone implantation. While PEEK materials offer benefits such as non-toxicity, high strength, and toughness, they often fall short in replicating the strength and biological properties of natural bone. Addressing these limitations, this study presents the development and application of functional PEEK composites in designing and manufacturing hip and femur bone implants that closely emulate natural bone structures. By adopting fused deposition modelling (FDM) techniques, and have developed porous hip and femur bone implants with homogenization lattice structures. The PEEK was enhanced through extrusion, spraying and coating deposition methods, incorporating biocomposites like calcium hydroxyapatite (cHAp)/reduced graphene oxide (rGO) to boost the material's performance. This novel approach also involves creating a novel lattice structure to mimic the bone structure within the composite for a more realistic bone implant. The research encompasses extensive testing, including compressive and tensile tests on PEEK and its composites, comparing these with simulated outcomes. The implants, comprising varying composite aggregates (up to 30% weight), were 3D-printed and assessed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDXS). The biocompatibility of these PEEK composites was verified through in-vitro cell cytotoxicity experiments, revealing a marked improvement in cell adhesion and overall properties. The cells produced PEEK composites quicker than pure PEEK materials was observed. Adding cHAp and rGO significantly boosted the material's mechanical strengths to match those of a hip bone. The elastic modulus, anisotropy, and cell properties were also investigated, resulting in a PEEK-hydroxyapatite (HAp) composite with micropores and nanostructures, promoting bioactivity, controlled configuration distribution, and cell growth. In conclusion, this thesis not only elucidates the potential of PEEK composites in facilitating hip and femur bone implantation but also paves the way for developing more biocompatible materials. This will undeniably benefit hip and femur implantation's scientific and industries

    Integration of sustainable and net-zero concepts in shape-memory polymer composites to enhance environmental performance

    Get PDF
    This review research aims to enhance the sustainability and functionality of shape-memory polymer composites (SMPCs) by integrating advanced 4D printing technologies and sustainable manufacturing practices. The primary objectives are to reduce environmental impact, improve material efficiency, and expand the design capabilities of SMPCs. The methodology involved incorporating recycled materials, bio-based additives, and smart materials into 4D printing processes, and conducting a comprehensive environmental impact and performance metrics analysis. Significant findings include a 30% reduction in material waste, a 25% decrease in energy consumption during production, and a 20% improvement in shape-memory recovery with a margin of error of ±3%. Notably, the study highlights the potential use of these SMPCs as biomimetic structural biomaterials and scaffolds, particularly in tissue engineering and regenerative medicine. The ability of SMPCs to undergo shape transformations in response to external stimuli makes them ideal for creating dynamic scaffolds that mimic the mechanical properties of natural tissues. This increased design flexibility, enabled by 4D printing, opens new avenues for developing complex, adaptive structures that support cell growth and tissue regeneration. In conclusion, the research demonstrates the potential of combining sustainable practices with 4D printing to achieve significant environmental, performance, and biomedical advancements in SMPC manufacturing

    Innovative Orthopedic Solutions for AI-Optimized Piezoelectric Implants for Superior Patient Care

    Get PDF
    This research aims to optimize piezoelectric implants for orthopedic applications, enhancing energy harvesting efficiency and mechanical integrity. Our objectives include comparing piezoelectric materials (PZT, PVDF, and BaTiO3) and employing advanced theoretical modeling, finite element analysis (FEA), and validation to identify optimal configurations. Methodologically, this study integrates machine learning and AI-driven techniques to refine design parameters and predict performance outcomes. Significant findings have revealed that PZT demonstrated the highest sensitivity (2 V/mm), achieving a maximum power output of 4.10 Watts, surpassing traditional solutions by over 100%. The optimization process ensured uniform stress distribution, reducing mechanical failure risk, with predictive models showing high accuracy (R-squared value of 97.77%). Error analysis indicated minimal discrepancies, with an average error margin of less than 2%. The conclusions highlight the significant potential of optimized piezoelectric implants in developing durable, efficient, and patient-friendly orthopedic solutions, setting a new standard in intelligent medical device innovation and contributing to enhanced patient care and improved clinical outcomes

    Piezoelectric effects on bone modeling for enhanced sustainability

    Get PDF
    © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Bone tissue possesses piezoelectric properties, allowing mechanical forces to be converted into electrical potentials. Piezoelectricity has been demonstrated to play a crucial role in bone remodelling and adaptability. Bone remodelling models that consider strain adaptation, both with and without piezoelectric effects, were simulated and validated in this study. This simulation help to better comprehend the interplay between mechanical and electrical stimulations during these processes. This study aimed to optimise the modelling of piezoelectric effects in bone modelling analysis. The connection between mechanical loads applied to bones and the resulting electrical charges generated by the piezoelectric effect was examined. Furthermore, mathematical modelling and simulation techniques were employed to enhance the piezoelectric effect and promote bone tissue growth and repair. The findings from this research have substantial implications for developing novel therapies for bone-related diseases and injuries. It was observed that electrically stimulated bone surfaces increased bone deposition. In some instances of physical disability or osteoporosis, therapeutic electrical stimulation can supplement the mechanical stresses of regular exercise to prevent bone loss. Consequently, the bone remodelling method on the software platform enables easy application and repetition of finite element analysis. This study significantly benefits bone tissue/biomedical engineering, particularly in bone remodelling, healing, and repair.Peer reviewe

    Superior strength and wear resistance of mechanically deformed High-Mn TWIP steel

    Get PDF
    In the present study, the mechanical and wear behaviour of the surface-mechanically treated high-manganese (high-Mn) twinning-induced plasticity (TWIP) steel were investigated. The TWIP alloy was first designed and fabricated via surface-mechanical attrition treatment (SMAT) system and the mechanical properties including strength, wear behaviour as well as the microstructural evolution were thereafter determined. Transmission electron microscopy (TEM) characterization revealed a typical dislocation as a result of the surface treatment as well as the formation of twin layers with a reduced stacking fault energy (SFE). Due to the ultra-fine grain refinement caused by plastic deformation during surface treatment, a microhardness value of 489 HV can be obtained after treatment. Likewise, the yield strength of the high-Mn TWIP steel could be enhanced from 360 MPa to 813 MPa and a reduction in elongation to failure of about 20 % can be achieved. The wear test showed that the treated TWIP steel possessed a reduced friction coefficient and improved wear resistance at different testing loads, attributed to the nanoscale refinement of grains induced during treatment. The strength, hardness, and wear resistance of the fabricated TWIP alloy improves significantly, thanks to surface treatment by SMAT.</p

    Evaluating the impact of recycling on polymer of 3D printing for energy and material sustainability

    Get PDF
    This research explores the sustainability of recycling polymer composites using fused deposition modelling (FDM). The objective was to assess how different recycling cycles affect the mechanical integrity and energy efficiency of recycled polymers. The study employed quantitative assessments of tensile strength, energy consumption, and carbon emissions across multiple recycling cycles. Recycled materials were compared with virgin materials to establish a baseline for degradation and efficiency. Various additives were tested to evaluate their ability to stabilise material properties. Significant findings indicate that recycled polymers retain up to 90 % of their original tensile strength after the first cycle, declining to 80 % after three cycles. Energy usage during the recycling process decreased by 30 %, while the carbon footprint was reduced by 25 %, showcasing notable environmental benefits. The study confirms that FDM recycling of polymer composites can be optimised to achieve substantial sustainability benefits in terms of environmental impact and material preservation
    • …
    corecore